If limx→aax-xaxx-aa=-1, then a=?
1
0
e
1e
Explanation for the correct option.
Step 1: Apply Limit Hospital Rule.
By L Hospital rule limx→cfxgx=limx→cf'xg'x.
By differentiating ax-xaxx-aa with respect to x, we get
axloga-axa-1xx1+logx-0
Now,
limx→aaxloga-axa-1xx1+logx=-1......(1)
Step 2: Find the value of a.
By applying limit in 1, we get
aaloga-a·aa-1aa1+loga=-1⇒aaloga-aa-1+1aa1+loga=-1⇒aaloga-aaaa1+loga=-1⇒aaloga-1aa1+loga=-1⇒loga-1=-loga-1⇒2loga=0⇒loga=0⇒a=1
Hence, option A is correct.