If limx→0aex-bcosx+ce-xxsinx=2, then a+b+c is equal to:
Step 1: Solve limx→0aex-bcosx+ce-xxsinx
limx→0aex-bcosx+ce-xxsinx=ae0-bcos0+ce-00sin0=a-b+c0=∞
Step 2: Apply L' Hospital's Rule.
limx→0aex-bcosx+ce-xxsinx=limx→0aex+bsinx-ce-xsinx+xcosx=ae0+bsin0-ce0sin0+0cos0=a-c0=∞
So, we will again apply L' Hospital's Rule.
limx→0aex+bsinx-ce-xsinx+xcosx=limx→0aex+bcosx+ce-xcosx+cosx-xsinx=ae0+bcos0+ce0cos0+cos0-0sin0=a+b+c1+1-0=a+b+c2
Step 3: Find the value of a+b+c.
We have limx→0aex-bcosx+ce-xxsinx=2
⇒a+b+c2=2⇒a+b+c=4
Hence, a+b+c=4