1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Angle between Two Lines
If line 2x+...
Question
If line
2
x
+
3
y
+
4
=
0
is perpendicular to
3
x
−
a
y
+
5
=
0
then
a
=
?
A
3
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
2
Line
2
x
+
3
y
+
4
=
0
is perpendicular to
3
x
−
a
y
+
5
=
0
Consider the line
2
x
+
3
y
+
4
=
0
y
=
−
2
3
x
−
4
3
The slope of the above line is
m
1
=
−
2
3
The other line,
3
x
−
a
y
+
5
=
0
y
=
3
a
x
+
5
a
The slope of the line is
m
2
=
3
a
Using the condition of perpendicularity we can write
m
1
.
m
2
=
−
1
⇒
−
2
3
×
3
a
=
−
1
⇒
a
=
2
Suggest Corrections
0
Similar questions
Q.
Solve
3
√
2
x
−
5
√
3
y
+
√
5
=
0
2
√
3
x
+
7
√
2
y
−
2
√
5
=
0
Q.
Find the equation of the line perpendicular to the line
2
x
+
3
y
+
5
=
0
and passing through
(
2
,
−
3
)
Q.
A line passing through point A (-5, -4) meet other three lines x + 3y + 2 = 0, 2x + y + 4 = 0 and
x
−
y
−
5
=
0
at B,C and D respectively If
(
15
A
B
)
2
+
(
10
A
C
)
2
=
(
6
A
D
)
2
, then the equation of line is
Q.
If
∣
∣ ∣
∣
x
+
2
2
x
+
3
3
x
+
4
2
x
+
3
3
x
+
4
4
x
+
5
3
x
+
5
5
x
+
8
10
x
+
17
∣
∣ ∣
∣
=
0
then
x
is equal to
Q.
Solve the following pair of simultaneous equations:
3
√
2
x
−
5
√
3
y
+
√
5
=
0
and
2
√
3
x
+
7
√
2
y
−
2
√
5
=
0
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Tango With Straight Lines !!
MATHEMATICS
Watch in App
Explore more
Angle between Two Lines
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app