Let eccentric angles are θ and ϕ, then
θ−ϕ=π2 (given)
⇒θ=π2+ϕ
The line joining the points θ and ϕ is
xacos(θ+ϕ2)+ybsin(θ+ϕ2)=cos(θ−ϕ2)
∵(θ=π2+ϕ)
⇒xacos(π4+ϕ)+ybsin(π4+ϕ)=cosπ4
⇒xacos(π4+ϕ)+ybsin(π4+ϕ)=1√2 ...(1)
The given line is lx+my+n=0
⇒lx+my=−n ...(2)
Now, equation (1) and (2) represent the same line, so comparing them, we get
cos(π4+ϕ)la=sin(π4+ϕ)mb=−1n√2
⇒cos(π4+ϕ)=−lan√2...(3)
and
⇒sin(π4+ϕ)=−mbn√2...(4)
Squaring and adding (3) and (4), we get
l2a22n2+m2b22n2=1
⇒l2a2+m2b2=2n2
⇒a2l2+b2m2n2=2