If line x+αy+1=0 is perpendicular to the line 2x−βy+1=0 and parallel to the line x−(β−3)y−1=0, then the value of |α−β| is
Open in App
Solution
Let the lines be l1:x+αy+1=0l2:2x−βy+1=0l3:x−(β−3)y−1=0 Slope of the lines are m1=−1α,m2=2β,m3=1β−3 From the given conditions, m1×m2=−1⇒−2αβ=−1⇒αβ=2⋯(1)m1=m3⇒−1α=1β−3⇒α+β=3⋯(2) Now, |α−β|=√(α+β)2−4αβ⇒|α−β|=√9−8=1