wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If lines ax+by+c=0,bx+cy+a=0 and cx+ay+b=0 are concurrent then

Open in App
Solution

ax+by+c=0
bx+cy+a=0
cx+ay+b=0
Adding all the above equations, we get,
ax+by+bx+cy+a+cx+ay+b=0
ax+ay+a+bx+by+b+cx+xy+c=0
a(x+y+1)+b(x+y+1)+c(x+y+1)=0
(xy+1)(a+b+c)=0
Assuming (a+b+c)=0, we get,
a+b=c.............(1)
cubing both sides,
a3+b3+3ab(a+b)=c3a3+b3+3ab(c)=c3.........fromeq.(1)a3+b33abc=c3a3+b3+c3=3abc

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon