The correct option is D (14,−5,8)
Given lines :
L1:x2=y−2−1=z−11 and L2:x−1α=y+22+α=z−1
D.R′s of L1=(a1,b1,c1)=(2,−1,1)
D.R′s of L2=(a2,b2,c2)=(α,2+α,−1)
For coplanar lines :
∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣=0⇒∣∣
∣∣1−4−12−11α2+α−1∣∣
∣∣=0⇒(1−2−α)+4(−2−α)−(4+2α+α)=0⇒α=−138
so, any point on L2=(1−138λ,−2+38λ,−λ)
For λ=8,−8 points are (−12,1,−8) and (14,−5,8)