If log105+log10(5x+1)=log10(x+5)+1, then x is equal to
The correct option is B: 3
We have, log105+log10(5x+1)=log10(x+5)+1
⇒log105+log10(5x+1)=log10(x+5)+log1010 [log1010=1]
⇒log10[5(5+1)]=log10[10(x+5)] {(log a+log b=log(a×b)}
⇒5(5x+1)=10(x+5)
⇒5x+1=2(x+5)
⇒5x+1=2x+10
⇒3x=9
∴x=3