If log10sinx+log10cosx=−1,x∈(0,π2) and log10(sinx+cosx)=(log10n)−12, then the value of n is
A
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C12 log10sinx+log10cosx=−1 ⇒log10(sinxcosx)=−1 ⇒log10(sin2x2)=−1 ⇒sin2x2=110 ⇒sin2x=15⋯(1)
And, log10(sinx+cosx)=(log10n)−12 ⇒2log10(sinx+cosx)=log10n−log1010 ⇒log10(sinx+cosx)2=log10(n10) ⇒(sinx+cosx)2=n10 ⇒1+sin2x=n10
Using equation (1), we get 1+15=n10 ⇒n=12