If log1227=a, then the value of log616 in terms of a will be
A
2(3−a3+a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3(3−a3+a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4(3−a3+a)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5(3−a3+a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C4(3−a3+a) Given that, a=log1227 ⇒a=log12(3)3=3log123[∵logam=mloga] ⇒a=3log312=3log3(3⋅4) =31+log34[∵log(ab)=loga+logb]=31+2log32 ⇒log32=3−a2a Then, log616=log624=4log62=4log26 =41+log23=41+2a3−a=4(3−a3+a) Ans: C