If log2(x+y)=3 and log2x+log2y=2+log23, then the values of x and y are:
log2(x+y)=3
Or, (x+y)=23=8 .............(1)
And, log2x+log2y=2+log23
log2(x.y)=log24+log23 .........(2) (∵2=log24)
Then, we have,
x+y=8............(3)
xy=12 ...........(4)
x=8−y
Putting it in Eq. 4 we get, (8−y)y=12
Or, −y2+8y−12=0
y2−8y+12=0
Or, (y−6)(y−2)=0
Hence, y=2 or y=6
And using y in Eq 3 for values of y we get x=6 or x=2