We have,
log2(x+y)=log3(x−y)=log25log0.2
⇒log2(x+y)=log3(x−y)=log25log210
⇒log2(x+y)=log3(x−y)=log25log15
⇒log2(x+y)=log3(x−y)=log52log5−1
⇒log2(x+y)=log3(x−y)=2log5−log5
⇒log2(x+y)=log3(x−y)=−2
Now,
log2(x+y)=−2,log3(x−y)=−2
(x+y)=2−2......(1),(x−y)=3−2......(2)
Solving equation (1) and (2) to, and we get,
x=1372 and y=572
Hence, this is the answer.