log2(x+y)=log0.225,log3(x−y)=log0.225
⇒x+y=2log0.225,x−y=3log0.225
⇒x+y=2log21025,x−y=3log21025
⇒x+y=2log1525,x−y=3log1525
⇒x+y=2log5−125,x−y=3log5−125
⇒x+y=2−2log55,x−y=3−2log55
⇒x+y=2−2,x−y=3−2
⇒x+y=14,x−y=19
⇒x+y+x−y=14+19
⇒2x=9+436=1336
⇒x=1372
Substitute x=1372 in x+y=14 we get
⇒y=14−x=14−1372=18−1372=572
∴x=1372,y=572