Letlog2(x+y)=log3(x−y)=log25log0.2=Plog2(x+y)=P;x+y=2Plog3(x−y)=P;x−y=3Plog25log0.2=P;log52log5−1=Plog25=Plog5−1log52=log5−PP=−2Substituting value of Px+y=2−2=14...(1)x−y=3−2=19...(2)Adding eq.(1) and eq.(2), we get2x=14+19=9+436=1336So,x=1372Substituting value of x in eq.(1)y=14−1372=18−1372=572