If log2(x+y)=log3(x−y)=log 25log 0.2, find the values of x and y.
Given log2(x+y)=log3(x−y)=log 25log 0.2
log2(x+y)=log3(x−y)=log 52log 5−1
log2(x+y)=log3(x−y)=2×log 5−1×log 5
log2(x+y)=log3(x−y)=−2
log2(x+y)=−2 and log3(x−y)=−2
x+y=2−2 -----------(1) and x−y=3−2 ----------(2)
Solving (1) and (2) we get
x=1372 and y=572