If |log2x+1|+∣∣1−(log2x)2∣∣=∣∣log2x+(log2x)2∣∣, then the true set of values of x is {λ}∪[μ,∞). Then
A
2λ−3=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
μ−2=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2λ−μ=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4λ−μ=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D4λ−μ=0 |log2x+1|+∣∣1−(log2x)2∣∣=∣∣log2x+(log2x)2∣∣ ⇒|log2x+1|+∣∣(log2x)2−1∣∣=∣∣log2x+(log2x)2∣∣ ∴(log2x+1)((log2x)2−1)≥0 ⇒(log2x+1)2(log2x−1)≥0 ⇒log2x=−1 or log2x≥1 ⇒x∈{12}∪[2,∞) ⇒λ=12,μ=2.