The correct option is D 0
log2x2⋅logx2=log4x2
For log to be defined
2x>0 and 2x≠1 ...(1)
x>0 and x≠1 ...(2)
4x>0 and 4x≠1 ...(3)
From equations (1),(2) and (3)
x>0 and x≠14,12,1
Now,
log2x2⋅logx2=log4x2
⇒1log22x⋅1log2x=1log24x
⇒log22x⋅log2x=log24x
⇒(1+log2x)log2x=2+log2x
⇒(log2x)2=2
⇒log2x=±√2
⇒x=2±√2∉Z
Hence, the number of integral values of x is 0.