If log32,log3(2x−5) and log3(2x−7/2) are in A.P, then x is equal to
A
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2,3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 3 Given log32,log3(2x−5)log3(2x−72) are in A.P ⇒2log3(2x−5)=log32+log3(2x−72) ⇒log3(2x−5)2=log32⋅(2x−72) ⇒(2x−5)2=2(2x−72) Let 2x=t ⇒(t−5)2=2t−7 ⇒t2−10t+25=2t−7 ⇒t2−12t+32=0 ⇒t2−8t−4t+32=0 ⇒(t−8)(t−4)=0 ⇒(t−8)=0 or (t−4)=0 ⇒t=8 or t=4 ⇒2x=8 or 2x=4 ⇒2x=23 or 2x=22 Comparing the exponents, we get x=2 or x=3 Therefore, x cannot take 2 because 22−5=−1 Hence,option 'A' is correct.