log32,log3(2x−5),log3(2x−72) are in arithmetic progression.
⇒log32+log3(2x−72)=2×log3(2x−5)
⇒log3(2×(2x−72))=log3(2x−5)2
⇒2x+1−7=(2x−5)2
i.e. 2x+1−7=22x−5×2x+1+25
i.e. 22x−6×2x+1+32=0
i.e. 22x−12×2x+32=0
i.e. (2x−4)×(2x−8)=0
i.e. 2x=4,8orx=2,3
However, when x is 2,2x−5 becomes −1 which is not allowed inside logarithm.
Hence x=3.