For log to be defined,
2x2+6x−5>0
⇒x∈(−∞,−3−√192)∪(−3+√192,∞) ⋯(1)
Now, log3(2x2+6x−5)>1
⇒2x2+6x−5>31⇒2x2+6x−8>0⇒x2+3x−4>0⇒(x−1)(x+4)>0
⇒x∈(−∞,−4)∪(1,∞) ⋯(2)
From (1) and (2),
x∈(−∞,−4)∪(1,∞)
So, the integers which does not satisfy the inequality are −4,−3,−2,−1,0,1