If log3(2sin2x3)2+1=0,x∈[0,2π],
then which among the following value(s) of x satisfying the above equation
A
x=π6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x=4π3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x=π3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x=7π6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dx=7π6 log3(2sin2x3)2+1=0,sin2x≠0 ⇒log3(2sin2x3)2=−1 ⇒(2sin2x3)2=3−1=13 ⇒49sin22x=13⇒sin22x=34=(√32)2⇒sin22x=sin2π3⇒2x=nπ±π3,n∈Z ⇒x=nπ2±π6,n∈Z