If log3x(45)=log4x(40√3), then the integral part of log3x3 is equivalent to
A
Maximum value of (sin82x+cos164x+2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Number of solutions of 4sinx=x in x∈[0,2π]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Number of real roots of the equation 2x98+5x97+5x96+...+5x2+5x+3=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Value of (a100−3a9824a99) if an=αn−βn, where n≥1 and α,β are the roots of x2−72x−3=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A Maximum value of (sin82x+cos164x+2) D Value of (a100−3a9824a99) if an=αn−βn, where n≥1 and α,β are the roots of x2−72x−3=0 log3x(45)=log4x(40√3)=k ⇒45=(3x)k,40√3=(4x)k ⇒4540√3=(3x)k(4x)k⇒98√3=(34)k ⇒k=log3/4(34)3/2=32
Now, log3x45=32 ⇒(3x)3/2=45⇒x3=75 ⇒log3x3=log3(75) ∵27<75<81 log327<log375<log381 3<log375<4 ⇒ Integral part =3
p(x)=2x98+5x97+5x96+...+5x2+5x+3 =2x(x97+x96+.....+x+1)+3(x97+x96+.....+x+1) =(2x+3)(x97+x96+.....+x+1) =(2x+3)(x+1)(x96+x94+...+x2+1)≥1∀x∈R So, real roots of p(x)=0 are −1 and −32 i.e. only two real roots.