The correct option is D only one real solution
For given expression to be defined,
3−x>0⇒x<3,1−x>0⇒x<1⇒(i)
3+x>0,2x+1>0⇒x>−1/2
Thus domain is : x∈(−12,1)=D (say)
We have,
log4(3−x)+log.25(3+x)=log4(1−x)+log0.25(2x+1)
⇒log4(3−x)+log1/4(3+x)=log4(1−x)+log1/4(2x+1)
⇒log4(3−x)−log4(3+x)=log4(1−x)−log4(2x+1),[log1/ab=−logab]
⇒log4(3−x)(3+x)=log4(1−x)(2x+1),[∵loga−logb=logab]⇒(3−x3+x)=(1−x2x+1)⇒6x+3−2x2−x=3+x−3x−x2⇒x2−7x=0 ⇒x=0,7
But 7∉D,∴x=0 is the only solution
Thus, it has only one real solutions.