If loga(ab) = x then evaluate logb(ab) in terms of x
loga(ab) = x
logaa + logab = x
We know, logaa = 1
1 + logab = x
logab = x - 1; logba = 1x−1
logb(ab) = logba + logbb = 1x−1 + 1 = 1+x−1x−1 = xx−1