If logc2.logb625=log1016.logc10, where c>0;c≠1;b>1;b≠1, then the value of b is
If 1/a + 1/b + 1/c = 1/(a+b+c), where a+b+c and a*b*c is not equal to zero then what's the value of
(a+b)(b+c)(c+a)
If ab+bc+ca=0, then the value of 1a2−bc+1b2−ca+1c2−ab will be: A.−1 B.a+b+c C.abc D.0