wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If logcosxtanx+logsinxcotx=0, then the most general solution of x is


A

2nπ-3π4,n

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

2nπ+π4,n

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

nπ+π4,n

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

2nπ+π4,n


Explanation for the correct option

Given that, logcosxtanx+logsinxcotx=0

logcosxsinxcosx+logsinxcosxsinx=0 tanx=sinxcosx,cotx=cosxsinx

logcosxsinx-logcosxcosx+logsinxcosx-logsinxsinx=0 logamn=logam-logan

logcosxsinx+logsinxcosx-1-1=0 logaa=1

logcosxsinx+logsinxcosx=2 logab=logbloga

logsinxlogcosx+logcosxlogsinx=2

logsinx2+logcosx2=2logcosxlogsinx

logsinx2-2logcosxlogsinx+logcosx2=0

logsinx-logcosx2=0

logsinx-logcosx=0

logsinx-logcosx=0 logam-logan=logamn

logsinxcosx=0

logtanx=0

Since no base is given we assume base to be 10

tanx=100 ...logab=xb=ax

tanx=1

The general solution of tanx=1is nπ+π4 but, for odd values of n, cosx,sinx<0

But cosx,sinx should not be negative as they are bases in the given logarithm

Therefore, the general solution of tanx=1 is 2nπ+π4,n.

Hence, option(B) i.e. 2nπ+π4,n is the correct answer.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon