If logcosxsinx+logtanxcotx+logsecxcosecx=0.Find sinxsin(π10)
We know that loga+logb=logab. using this property:
logcosxsinx+logtanxcotx+logsecxcosecx=0
⇒log(cosxsinx×tanxcotx×secxcosecx)=0
⇒log(sinxcosx)2=0
⇒sinx=cosx⇒x=π4
So, sinx=1√2
Hence,
sinxsinπ10=1×4√2(√5−1)=2√2√5−1