loge(1+x+x2+x3)
=loge[(1+x)(1+x2)]
=loge(1+x)+loge(1+x2)
=(x−x22+x33−x44+x55−x66+x77−x88+...∞)+(x2−x42+x63−x84+....∞)
=(x+x22+x33)+(−3x44−3x88−.....−3xnn+.....∞)+(x55+x66+.....xnn+....∞)
So, coefficient of xn when n is of the form 4m is −3n
and coefficient of xn when n is of the form 4m+2 or odd is 1n
So a=−3,b=−1
a×b=3