If logea+b2=12(logea+logeb), then the relation between a and b will be
a=b2
a=b
a=2b
none of these
Explanation for the correct option
Given that, logea+b2=12(logea+logeb)
⇒ logea+b2=12(logeab) [∵logam+logan=logamn]
⇒ logea+b2=logeab [∵nlogam=logamn]
⇒ a+b2=ab [∵logam=logan⇒m=n]
⇒ a+b=2ab
⇒a2-2ab+b2=0
⇒ a-b2=0 [∵x2-2xy+y2=x-y2]
⇒ a-b=0
⇒ a=b
Squaring both sides we get
Hence, option (B) is the correct answer.