The correct options are
A |x|−|y|≥√m B |x|−|y|≥0x+√m+1y>0 .....(i)
and
x−√m+1y>0 .... (ii)
Also, from the given equation,
(x+√m+1⋅y)⋅(x−√m+1⋅y)=m+1
⇒x2−(m+1)y2=m+1 ....(iii)
From (i) and (ii),
x−√m+1|y|>0, ie x>√m+1|y|
Case1 : y > 0,
Set p=x−y. Thus, x=p+y
Eqn (iii) ⇒
(p+y)2−(m+1)y2=m+1
⇒
y2(m)+y(−2p)+(m+1−p2)=0
For y to be Real, Discriminant (b2−4ac) should be non-negative.
4p2−4(m)(m+1−p2)≥0
⇒p2≥m
So p≥√m or p≤−√m
But, x>√m+1|y|>0
⇒
x>|y| .....(Since, m>0)
⇒|x|−|y|>0
Hence p≥m (Reject p<−√m)
i.e. |x|−|y|≥√m in case 1
Case2 : y < 0,
Let z=−y
So,
logm+1(x−√m+1z)+logm+1(x+√m+1z)=1 which, from symmetry, leads us to,
|x|−|z|≥√m
So, |x|−|y|≥√m
i.e |x|−|y|≥√m (In case 2).
Case 3: y = 0
⇒logm+1(x)+logm+1(x)=1 ie x2=m+1
ie |x|=√m+1
So |x|−|y|=√m+1−0=√m+1
⇒|x|−|y|≥√m is satisfied.
So in all Possible Cases,
|x|−|y|≥√m.
Further, √PositiveRealQuantity is always non negative.
Hence, we select option B in addition to option A.