If log|sinx|(x2−8x+23)>3log2|sinx|
x∈(3,π)∪(π,3π2)∪(3π2,5)
The given inequality can be written as log2(x2−8x+23)log2|sinx|>3log2|sinx|
As |sinx| can only take values 0<|sinx|<1 the value of
log2|sinx| is negative.
⟹log2(x2−8x+23)<3⇒x2−8x+23<23=8⇒x2−8x+15<0⇒(x−5)(x−3)<0⇒3<x<5
But the terms in the inequality are meaningful if |sinx|≠0, 1
So, /∈nπ2.
Hence x∈(3,π)∪(π,3π2)∪(3π2,5).