logx+1(4x3+9x2+6x+1)+log4x+1(x2+2x+1)=5
We know that,
x+1>0,x+1≠1⇒x>−1,x≠04x+1>0,4x+1≠1⇒x>−14,x≠0∴x∈(−14,∞)−{0}⋯(1)
Now,
logx+1(4x3+9x2+6x+1)+log4x+1(x2+2x+1)=5⇒logx+1[(x+1)(4x2+5x+1)]+log4x+1(x+1)2=5⇒logx+1[(x+1)2(4x+1)]+2log4x+1(x+1)=5⇒2logx+1(x+1)+logx+1(4x+1)+2log4x+1(x+1)=5⇒logx+1(4x+1)+2logx+1(4x+1)=3
Assuming logx+1(4x+1)=t
⇒t+2t=3⇒t2−3t+2=0⇒(t−1)(t−2)=0⇒t=1,2
Now,
t=1⇒logx+1(4x+1)=1
⇒4x+1=x+1⇒x=0
Which is not possible [from equation (1)]
t=2⇒logx+1(4x+1)=2
⇒4x+1=(x+1)2⇒x2−2x=0⇒x(x−2)=0⇒x=2 (∵x≠0)
Hence, the number of solution is 1.