The correct option is B (−1,0) ∪ (1, 3)
Given that, log(x+3)(x2−x)<1For log(x+3)(x2−x) to be defined,x2−x>0⇒x(x−1)>0⇒x<0 or x>1 ...[1]If x+3>1⇒x>−2then, x2−x<x+3⇒x2−2x−3<0⇒(x−3)(x+1)<0⇒−1<x<3 ....[2]From [1] and [2], we getx∈(−1, 0)∪(1, 3)If 0<x+3<1⇒−3<x<−2 ...[3]then, x2−x>x+3⇒x2−2x−3>0⇒(x−3)(x+1)>0⇒x<−1 or x>3 ....[4]From [3] and [4], we getx∈(−3, −2)