If logx y=100 and log2 x=10, then the value of y is
10002
2100
21000
210000
Given that,
log2 x=10⇔x=210 [∵logb a=x implies a=bx]
logx y=100⇔x100=y
⇒(210)100=y
⇒21000=y
If logxy=200 and log2x=10, then the value ofyis: