wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If log x2+y2=tan-1 yx, prove that dydx=x+yx-y

Open in App
Solution

We have, logx2+y2=tan-1xylogx2+y212=tan-1yx12logx2+y2=tan-1yx
Differentiate with respect to x, we get,
12ddxlogx2+y2=ddxtan-1yx 121x2+y2ddxx2+y2=11+yx2ddxyx121x2+y22x+2ydydx=x2x2+y2xdydx-yddxxx21x2+y2x+ydydx=x2x2+y2xdydx-yddxxx21x2+y2x+ydydx=x2x2+y2xdydx-y1x2 x+ydydx=xdydx-yydydx-xdydx=-y-xdydxy-x=-y+xdydx=-y+xy-xdydx=x+yx-y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon