The correct options are
A xyz=1
B xaybzc=1
C xaybzc=xyz
D xb+cyc+aza+b=1
Let logt xb−c=logt yc−a=logt za−b=p⇒logt x=p(b−c), logt y=p(c−a), logt z=p(a−b)⇒x=tp(b−c), y=tp(c−a), z=tp(a−b)∴xyz=tp(b−c)⋅tp(c−a)⋅tp(a−b)⇒xyz=tp(b−c+c−a+a−b)=t0=1xaybzc=tap(b−c)⋅tbp(c−a)⋅tcp(a−b)⇒xaybzc=tp(ab−ac+bc−ab+ac−bc) =t0=1∴xaybzc=xyzxb+cyc+aza+b=tp(b−c)(b+c)⋅tp(c−a)(c+a)⋅tp(a−b)(a+b)⇒xb+cyc+aza+b=tp(b2−c2+c2−a2+a2−b2) =t0=1=xyz∴xb+cyc+aza+b=1