The correct options are
A x=8,y=2
C x=14,y=64
Given that, xy=16 ....(1)
logyx−logxy=83
⇒logyx−1logyx=83[∵logab=1logba]
On substituting t=logyx, we get
⇒3t2−8t−3=0
⇒t=3,−13
⇒logyx=3
⇒x=y3 ....(2)
and logyx=−13
⇒x3y=1 ....(3)
On solving (1) & (2), we get
x=8,y=2
On solving (1) & (3), we get
x=14,y=64
Ans: A,B