If log32,log3(2x−5)andlog3(2x−72)are in arithmetic progression, the value of x is
A
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 3 Given that, log32,log3(2x−5)andlog3(2x−72)are in arithmetic progression. log32+log3(2x−72)=2log3(2x−5)⇒2(2x−72)=(2x−5)2⇒22x−10⋅2x+25−2⋅2x+7=0⇒(2x)2−12⋅2x+32=0Let2x=z.Then,wegetz2−12z+32=0⇒(z−8)(z−4)=0⇒z=8or4⇒2x=8or4=23or22⇒x=3or2Butforlog3(2x−5)andlog3(2x−72)tobedefined2x−5>0and2x−72>0⇒2x>5and2x>72⇒2x>5⇒x≠2∴x=3