wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If m2cos2π15cos4π15cos8π15cos14π15=n2, then find the value of m2n2n2.

Open in App
Solution

m2cos(2π15)cos(4π15)cos(8π15)cos(14π15)=n2
m2cos(π15)cos(2π15)cos(4π15)cos(8π15)=n2
(m2)2sin(π15)cos(π15)cos(2π15)cos(4π15)cos(8π15)=n2(2sinπ15)
(m2)2sin(2π15)cos(2π15)cos(4π15)cos(8π15)=2n2sinπ15
(m22)sin(4π15)cos(4π15)cos(8π15)=2n2(sinπ15)
(m28)sin(16π15)=2n2(sinπ15)
(m28)(sin(11π15))=2n2(sinπ15)
m2=16n2
m2n2n2=15n2n2=15


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon