The given relation can be written as
(m′+mcosθ2)+m2−m2cos2θ=1
or (m′+mcosθ2)=1−m2sin2θ
Similarly (n′+ncosθ)2=1−n2sin2θ
Now (m′+mcosθ)=(n′+ncosθ)
m′n′+(mn′+m′n)cosθ+mncos2θ
=−mn+mncos2θ by given relation
=−mn(1−cos2θ)=−mnsin2θ
Now squaring both sides, we get
or (m′+mcosθ)2(n′+ncosθ)2=m2n2sin4θ
Hence substituting from (1) and (2) in (3), we get
(1−m2sin2θ)(1−n2sin2θ)=m2n2sin4θ
or =(m2+n2)sin2θ=1 i.e. =m2+n2=csc2θ