The correct option is A 25
Given √7+√48=√m+√n.
Square both side,
we will get
7+√48=(√m+√n)2 [(a+b)2=a2+b2+2(a×b) ]
7+√48=(m+n+2√m×n)
now comparing L. H. S and R. H. S
m+n=7 .......... equ(1)
m×n=12 .......equ(2) [because √48=2×√12]
now, from equ(1) n=7−m ........ equ(3)
on solving equ(2) and equ(3), we will get
m2−7m+12=0
on solving this equation we will get
m=4 or 3
putting the value of m in equ(3)
n=3 or 4
hence
m2+n2=42+32=25