The correct option is A (pk−q)(bk−c)
m(ax2+2bx+c)+px2+2qx+r=n(x+k)2
Equating the coefficients of same power of x, we get
ma+p=n...(1)
mb+q=nk....(2)
mc+r=nk2...(3)
From equation (1) and (2),
mb+q=k(ma+p)
⇒m(ak−b)+pk−q=0⇒m=−pk−qak−b....(4)
From equation (2) and (3),
mc+r=k(mb+q)
⇒m(bk−c)+qk−r=0⇒m=−qk−rbk−c....(5)
From equation (4) and (5),
pk−qak−b=qk−rbk−c
⇒(ak−b)(qk−r)=(pk−q)(bk−c)