Geometrical Representation of Argument and Modulus
If mcos θ +...
Question
If mcos(θ+α)=ncos(θ−α), show that (m−n)cotθ=(m+n)tanα
Open in App
Solution
From the given relation, we have mn=cos(θ−α)cos(θ+α) Apply componendo and dividendo ∴m−nm+n=cos(θ−α)−cos(θ+α)cos(θ−α)+cos(θ+α)=tanαcotθ ∴(m−n)cotθ=(m+n)tanα