The correct option is B 2m+1
Let (√3+1)2m=I+f where I is some integer and 0≤f<1
Assuming F=(√3−1)2m
Now,
I+f+F=(√3+1)2m+(√3−1)2m=(4+2√3)m+(4−2√3)m=2m[(2+√3)m+(2−√3)m]=2m⋅2[ mC0×2m+ mC2×2m−2×3+⋯]=2m+1⋅[ mC0×2m+ mC2×2m−2×3+⋯]⇒I+f+F=2m+1k, k∈N⇒f+F=2m+1k−I
∴f+F is an integer, so
⇒f+F=1
As [(√3+1)2m]=I, so
[(√3+1)2m]+1=I+1⇒[(√3+1)2m]+1=I+f+F⇒[(√3+1)2m]+1=2m+1k
Hence [(√3+1)2m]+1 is divisible by 2m+1.