Given, m is any odd positive integer.
∴ m will leave a remainder 1 or 3 when divided by 4,
∴ m=4q+1 or 4q+3 for some integer q.
(i) When m=4q+1
⇒m2=(4q+1)2=16q2+8q+1
⇒m2−1=8(2q2+q)=8k
(where k=2q2+q)
∴m2−1 is divisible by 8.
(ii) When m=4q+3
⇒m2=(4q+3)2=16q2+24q+9
⇒m2=16q2+24q+8+1
⇒m2−1=16q2+24q+8
=8(2q2+3q+1)
⇒m2−1=8k(where k=2q2+3q+1)
∴m2−1 is divisible by 8.
Hence, m2−1 is divisible by 8 for any positive old integer m.
Hence proved.