Given equations of lines,
L1:3x−4y+7=0
and L2:12x+5y−2=0
⇒−12x−5y+2=0
(making constant term positive)
Now, a1a2+b1b2=3(−12)+(−4)(−5)=−16<0
Equation of obtuse angle bisector is
3x−4y+7√32+(−4)2=−−12x−5y+2√(−12)2+(−5)2
⇒13(3x−4y+7)=5(12x+5y−2)
⇒21x+77y−101=0
Slope, m=−2177=−311
∴|55m|=∣∣∣55×−311∣∣∣=15