If M=[1−3−11], then the value of M−13M2+19M3−127M4+....∞ is
A
113[−193−1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
313[−193−1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
113[1−9−31]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
313[1−9−31]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D313[1−9−31] Let N=M−M23+M39−M427+....∞...(1) MN=M2−M33+M49−M527+....∞ MN3=M23−M39+M427−....∞...(2)
Adding (1) and (2), we get N+MN3=M ⇒N(I+M3)=M ⇒N=[3−9−33][4−3−14]−1=113[3−27−93]=313[1−9−31]