1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Vector Triple Product
If m,M are th...
Question
If m,M are the minimum and the maximum value of
4
+
1
2
s
i
n
2
2
x
−
2
c
o
s
4
x
,
x
ϵ
R
,
then M -m is equal to:
A
9
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
17
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
7
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
17
4
Let
y
=
4
+
1
2
s
i
n
2
2
x
−
2
c
o
s
4
x
∴
y
=
4
+
1
2
(
2
s
i
n
x
c
o
s
x
)
2
−
2
(
c
o
s
2
x
)
2
∴
y
=
4
+
1
2
×
4
s
i
n
2
x
.
c
o
s
2
x
−
2
(
c
o
s
2
x
)
2
(1)
Put
c
o
s
2
x
=
t
∴
s
i
n
2
x
=
1
−
t
Equation (1) becomes,
y
=
4
+
2
(
1
−
t
)
t
−
2
(
t
)
2
∴
y
=
4
+
2
(
t
−
t
2
)
−
2
t
2
∴
y
=
4
+
2
t
−
2
t
2
−
2
t
2
∴
y
=
4
+
2
t
−
4
t
2
For y to be maximum or minimum, differentiate y w.r.t. x and equate it to zero.
∴
d
y
d
x
=
d
d
x
[
4
+
2
t
−
4
t
2
]
=
0
∴
2
−
8
t
=
0
∴
2
=
8
t
∴
t
=
2
8
∴
c
o
s
2
x
=
1
4
∴
c
o
s
x
=
±
1
2
∴
c
o
s
x
=
1
2
or
c
o
s
x
=
−
1
2
Consider first root
c
o
s
x
=
1
2
∴
x
=
c
o
s
−
1
1
2
∴
x
=
π
3
Consider first root
c
o
s
x
=
−
1
2
∴
c
o
s
x
=
−
c
o
s
π
3
∴
c
o
s
x
=
c
o
s
(
π
−
π
3
)
∴
c
o
s
x
=
c
o
s
(
2
π
3
)
∴
x
=
2
π
3
1) For
x
=
π
3
,
y
=
4
+
1
2
(
s
i
n
2
π
3
)
2
−
2
(
c
o
s
π
3
)
4
∴
y
=
4
+
1
2
(
√
3
2
)
2
−
2
(
1
2
)
4
∴
y
=
4
+
1
2
(
3
4
)
−
2
(
1
16
)
∴
y
=
4
+
3
8
−
1
8
∴
y
=
4
+
2
8
∴
y
=
4
+
1
4
=
17
4
2) For
x
=
2
π
3
, we get,
y
=
4
+
1
2
(
s
i
n
4
π
3
)
2
−
2
(
c
o
s
2
π
3
)
4
∴
y
=
4
+
1
2
(
−
√
3
2
)
2
−
2
(
−
1
2
)
4
∴
y
=
4
+
1
2
(
3
4
)
−
2
(
1
16
)
∴
y
=
4
+
(
3
8
)
−
(
1
8
)
∴
y
=
4
+
1
4
∴
y
=
17
4
Now,
d
2
y
d
x
2
=
d
d
x
(
d
y
d
x
)
∴
d
2
y
d
x
2
=
d
d
x
(
2
−
8
t
)
∴
d
2
y
d
x
2
=
−
8
<
0
Thus, function is maximum and no minimum value exists.
∴
M
−
m
=
17
4
Suggest Corrections
0
Similar questions
Q.
If m and M are the minimum and the maximum value of
4
+
1
2
s
i
n
2
2
x
−
2
c
o
s
4
x
,
x
ϵ
R
then M-m is equal to
Q.
If M and m are maximum and minimum value of the function
f
(
x
)
=
tan
2
x
+
4
tan
x
+
9
1
+
tan
2
x
, then
(
M
+
m
)
equals ?
Q.
If the maximum and the minimum values of
∣
∣ ∣ ∣
∣
1
+
sin
2
x
cos
2
x
4
sin
2
x
sin
2
x
1
+
cos
2
x
4
sin
2
x
sin
2
x
cos
2
x
1
+
4
sin
2
x
∣
∣ ∣ ∣
∣
are
M
and
m
respectively, then
M
m
is
Q.
Consider the function
f
(
x
)
=
x
2
−
4
x
+
17.
If
M
and
m
are the maximum and minimum values of
f
in
[
0
,
3
]
respectively, then the value of
2
M
−
m
is
Q.
If the minimum and the maximum values of the function
f
:
[
π
4
,
π
2
]
→
R
,
defined by
f
(
θ
)
=
∣
∣ ∣ ∣
∣
−
sin
2
θ
−
1
−
sin
2
θ
1
−
cos
2
θ
−
1
−
cos
2
θ
1
12
10
−
2
∣
∣ ∣ ∣
∣
are
m
and
M
respectively, then the ordered pair
(
m
,
M
)
is equal to :
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Vector Triple Product
MATHEMATICS
Watch in App
Explore more
Vector Triple Product
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app