If m=max{∣∣|x−5|−|x−3|∣∣} and n=min{∣∣x−2|+|x−4|}, then the value of m+n is
6−5 x 5−2 x 63 x 5m x 6n = 1, then m + n will be
Let n(A−B)=25+x, n(B−A)=2x and n(A∩B)=2x. If n(A)=2(n(B)), then x = ___.