If m≠n and (m+n)−1 × (m−1 + n−1) = mxny, then x+y is equal to
-2
Given
(m+n)−1 × (m−1 + n−1) = mxny,
⇒ 1m+n × (1m+1n) (∵a−m = 1am)
⇒ 1m+n × (m+nnm)
⇒ m+n(m+n)mn = 1mn = (mn)−1
⇒ (mn)−1 = m−1n−1 (∵(ab)m = am×bm)
⇒ x= −1 and y = −1
∴ x + y = −2